

PbMoO₄ DATA SHEET

PbMoO₄ (Lead Molybdate) is a birefringent crystal that was originally developed in 1969 by Bell Laboratories for acousto-optic applications. It is grown by the Czochralski method with a typical boule size of 1" diameter by 4" long. PbMoO₄ is currently used in both acousto-optic devices and in polarization-based passive components for telecommunications. In spite of its relatively high refractive index, the surface reflection can be reduced below 0.1% from 1510-1590 nm for both "s" and "p" polarizations by anti-reflection coating. The physical and optical properties of PbMoO₄ are shown below:

Density¹

$$\rho = 6.95 \frac{g}{\text{cm}^3}$$

Hardness² 3 Mohs

Transparency¹ 0.42-5.5 μm

Melting Temperature³ $t_m = 1338K$

Thermal expansion coefficients $\alpha_{\parallel a}=12.4 \ x \ 10^{-6} \ / \ K$, $\alpha_{\parallel c}=26.7 \ x \ 10^{-6} \ / \ K$

Effective Birefringence (λ =1.550 μ m)⁴

 $\Delta n_{\text{eff}} = 0.104$

Birefringence (Δ n=n_o-n_e@ λ =1.550 μm)⁵ Δ n=0.090; n_o=2.260; n_e=2.170;

Thermo-optic coefficient (λ =1.550 μ m)⁴

$\frac{d(\Delta n_{\rm eff})}{dT} = 190 \times 10^{-6} / K$

Crystal type & space group¹

Negative uniaxial; Tetragonal, $I4_1/a(C_{4h}^6)$, a=5.4312, c=12.1065 Angstroms

Sellmeier Equation (wavelength, λ , in μ m; λ range: 0.44-1.08 μ m)³

$$n_o = \sqrt{1 + \frac{3.54642\lambda^2}{\lambda^2 - (0.18518)^2} + \frac{0.58270\lambda^2}{\lambda^2 - (0.33764)^2}} \quad n_e = \sqrt{1 + \frac{3.52555\lambda^2}{\lambda^2 - (0.17950)^2} + \frac{0.20660\lambda^2}{\lambda^2 - (0.32537)^2}}$$

References

¹N. Uchida and N. Niizeki, IEEE Proc. **61** (1973) p. 1073

²D.A. Pinnow, L.G. Van Uitert, A.W. Warner and W.A. Bonner, Appl. Phys. Lett. **15** (1969) p. 83. ³"Handbook of Optics" by the Optical Society of America; Michael Bass, editor in chief, 2nd edition, volume II, 1995; Part 4 - Optical and Physical Properties of Materials.

⁴Isomet measurement; $\Delta n_{\text{eff}} = \Delta n - \lambda \frac{\partial (\Delta n)}{\partial \lambda}$

⁵Ellipsometry measurement

902